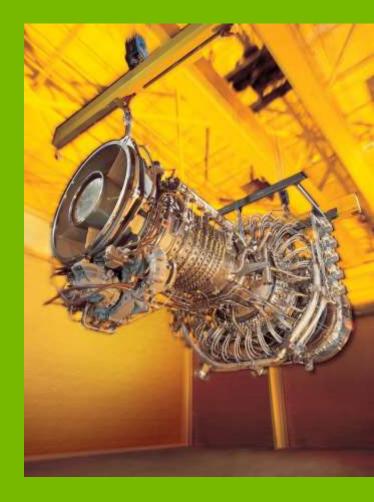
Alternative Fuels / Fuel Quality

Ivan Bach


Program Manager Aero Derivative Gas Turbines

GE imagination at work

© 2012 General Electric Company. All Rights Reserved. This material may not be copied or distributed in whole or in part, without prior permission of the copyright owner. LM1800e®, LM2500®, LM6000®, LMS100®, and LM5000® are registered trademarks of the General Electric Company (USA).

1. Introduction

Welcome

- 1. Standard Fuels
- Non-standard Fuels

 a) Gas Fuels
 b) Liquid Fuels

 Fuel Quality
- Ue L Ethanol Diesel 4 Bio-Diesel A Propane 4 Natural Gas

1. Standard Fuels

Basic fuel requirements for LMs

- Can burn Gas Fuels
 - Ample heating value
 - Kept as gas
 - Clean
 - Can burn Liquid Fuels
 - Ample heating value
 - Atomized
 - Clean
- Can't burn Solid Fuels
 - Unless gases or liquids synthesized from solids like coal

Alternative Fuels/Fuel Quality - 2012 Users Conf September 18-20, 2012

Fuels for GE's LM Aero Derivative Gas Turbines

Well defined Fuel Specifications for both Fuel Gases and Liquid Fuels are already established:

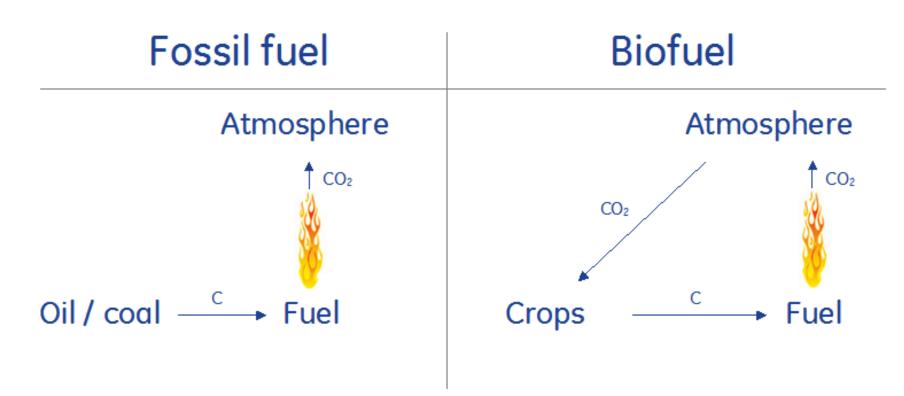
- MID-TD-0000-1, rev.2009 for Gas Fuels
- MID-TD-0000-2, rev.2010 for Liquid Fuels

Non-standard Fuels can be used in your LM Gas Turbine GE can support your efforts to start using a Non-standard Fuel

2. Non-standard Fuels



GE Aero non-standard fuel capabilities



**Contact GE for specific engine options and package configurations

Aero Gas Classification by Lower Heating Value

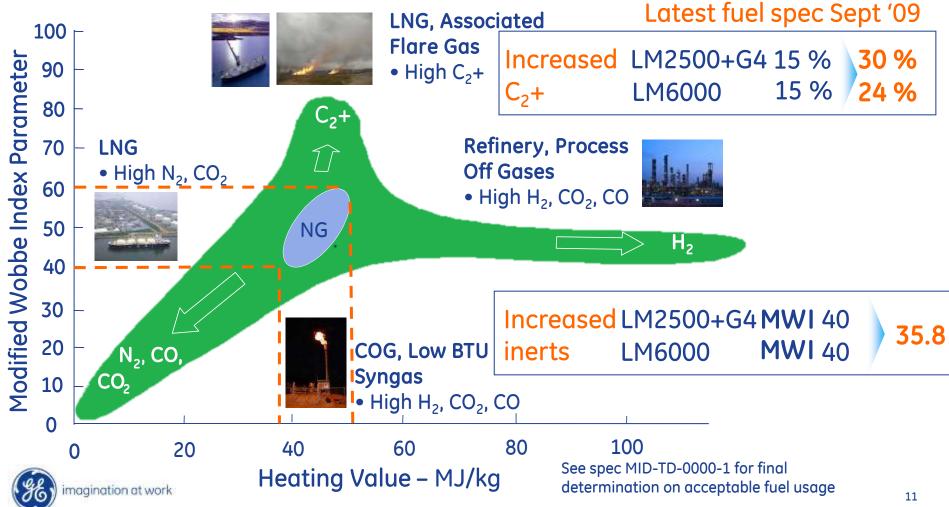
What is the argument for biofuel greenhouse gas reductions?

Carbon in fossil fuel released to atmosphere as CO2

On average, the atmospheric CO2 stays constant due to the sustainable cycle

2a. Non-standard Gas Fuel

What are non-standard gas fuels?


Fuels characterized by the following LHV and constituents:

Modified Wobbe Index < 40 or > 60

High H₂ fuels > 5% by volume

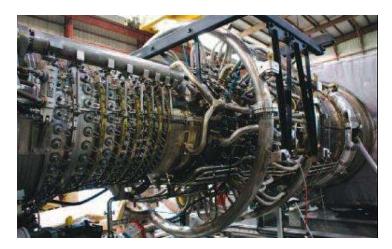
High CO, CO₂, N₂, C₂+

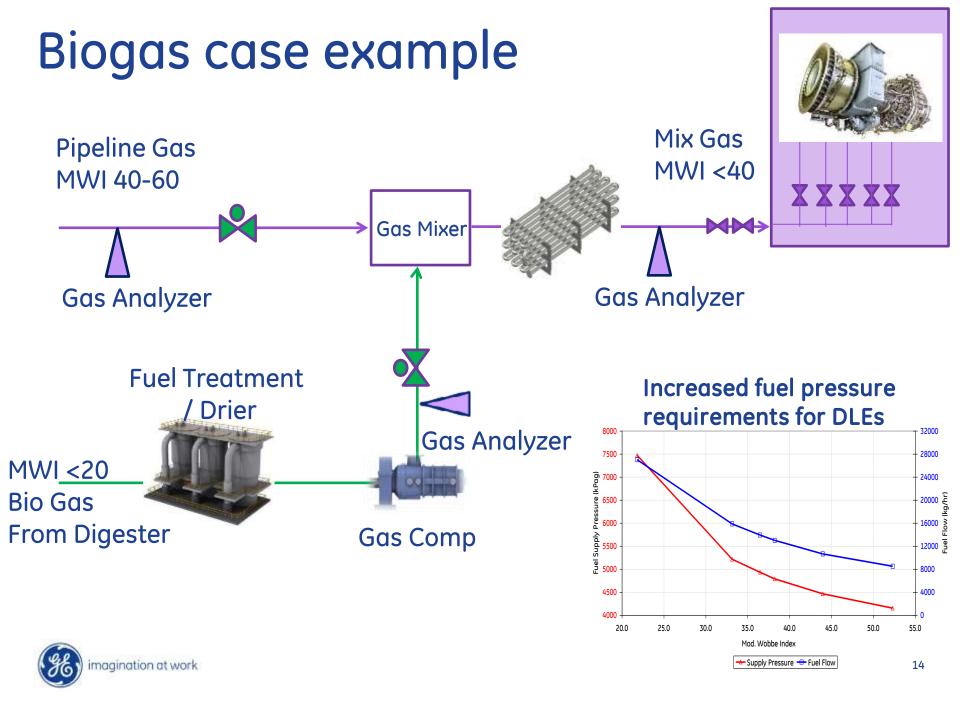
- Low to med BTU fuels, LHV < \sim 29.8 MJ/m³
- High BTU fuels, LHV > ~44.7 MJ/m³

Applications of non-standard fuels Low BTU syngas (landfill, biogas)

Low energy content gas solution

The Challenge


- Plant is designed to convert waste to obtain syngas
- One ton of the combustible waste derived syngas equals:
 - 560 m³ of methane
 - 499 kg of fuel oil
 - 750 kg of coal
- How to utilize this low energy (~9,3 MJ/kg, MWI ~13), high H₂ syngas for power generation?



The Solution

- LM2500+G4 gas turbine selected
- Design modifications include
 - Fuel system
 - Increased nozzle capacity
 - High fuel flow rate
 - N₂ purge system (high H₂ syngas)
 - Associated control system changes

Aero related high-H₂ experience

Experience:

- Aero has experience in burning high-H₂ fuels
- Gas composition and site specific needs may induce engine and package changes

Applications:

- Synthetic gases
- 'Steel' gases
- Refinery/process off gases
- Blends

LM2500, Brazil, 14% H₂

15

LM5000, Germany, 50% H₂ LM6000, USA, 33% H₂ LM2500, USA, 20% H₂ LM2500, China, 65% H₂

Applications of non-standard fuels Coke oven gas

Heating Value - Biu/Ib

Coke oven gas

Medium BTU - Coking

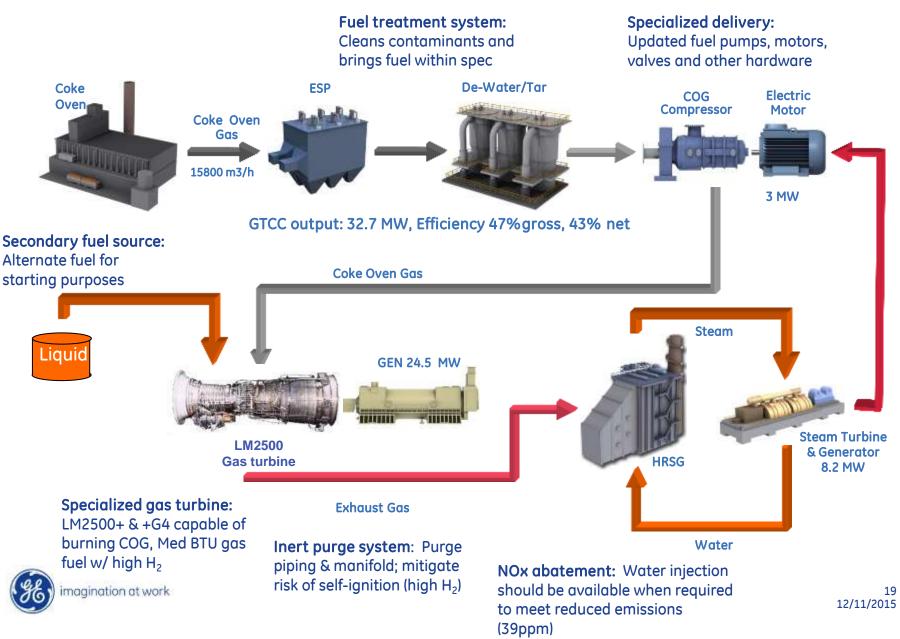
- Coking temp: 900-1100°C
- Material: Bituminous coal
- Main product: coke
- Application: steel production, power generation

COG composition (vol%):

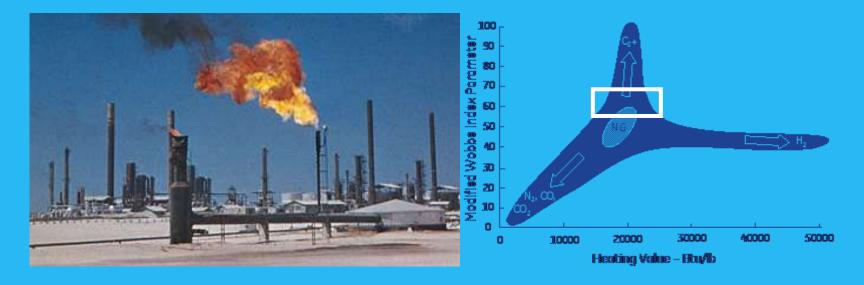
H ₂	(55-65)	7	
CH_4	(24-28)		
CO	(6-8)		MWI 31-34
N ₂	(4-7)		LHV ~15-18 MJ/m ³
CO2	(2-4)		
C2+	(2-4)	J	

Henan LiYuan Coal & Coking Group Co., Ltd

1 ton coke \rightarrow ~220 m³ surplus COG > 1 MT/ yr to power LM2500+

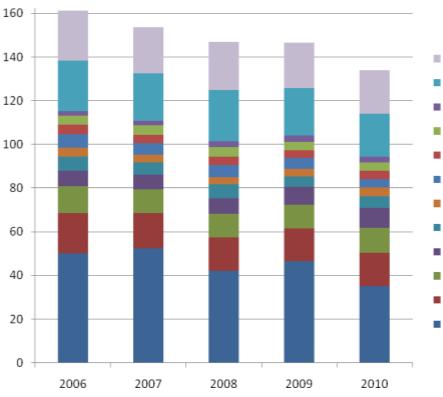


Coke oven gas – risks & solutions							
<u>Risk</u>	<u>Concern</u>	<u>Solution</u>					
Fuel LHV	Constant flow & large volume of fuel required	Fuel delivery sized to handle added gas flow requirement					
%Vol H ₂	COG often has high levels (>50%vol) of hydrogen; risk of ignition in a confined volume	Inert purge system, which removes possibility of a premature ignition Class III certified electrical equipment					
Contaminants	Potential contaminants (Tar, H ₂ S, NH ₃ , Benzene & Naphthalene) affect the engine, engine performance, emission, and lowers maintenance intervals	Gas purification system, removes contaminants from COG; allows for power generation w/ performance & maintenance intervals					
Water and air	Heavy industrial environment with particulates and other air contaminants; alkalis in water	Proper design for air filtration and water sampling regimen and cleaning					


imagination at work

COG power generation

LM2500+ / +G4 CombCycle



Applications of non-standard fuels Flare gases

Flare gas - a global concern 140-150 bcm flared gas annually

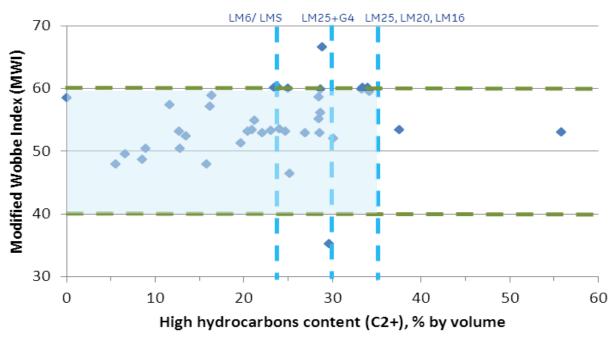
150 bcm equivalent to:

Annual gas use of France and Germany combined

5% of global gas production

7-15 billion Euro per year in lost value

Annual emission from 77 million cars (1/3 of US fleet)



imagination at work

© Copyright 2012 General Electric Company. All Rights Reserved. Subject to restrictions on cover page

Source: World Bank - GGFR, NOAA (2006 - 2010), GE Energy Flare Gas Reduction white paper (2011)

Flare gas properties survey

- ~60 flare gas samples analyzed, 90% within Aero fuel specification
- Most outside of spec could be approved after engineering review
- Standard Modified Wobbe Index (MWI) range is 40-60 (avg LHV value 42.5 MJ/m³)
- Additional consideration for DLE: high hydrocarbon (C₂+) limits

nagination at work

• 95% flare gas samples meet DLE configuration limit for higher hydrocarbons, others could be approved pending specific C_2 + components and volumes

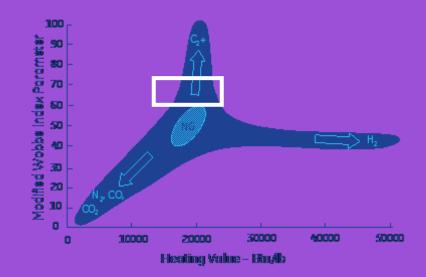
Aero turbines can burn majority of flare gases without engine modifications

Aero applications for flare gas today

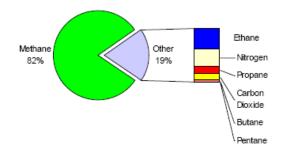
Experience growing ...

- LM2500 power plant in S. America
 - 16M ft³/day flare generates >40MW
 - Operates with low BTU fuel
 - >50K Hours reliable operations
- PGT16 in Nigeria
 - Associated gas gathering (AGG) system
 - FG converted to LNG
- TM2500 in Nigeria
 - Compression station and power generation
 - FG converted to LNG via distributed power
 - Installed end 2009

nagination at work

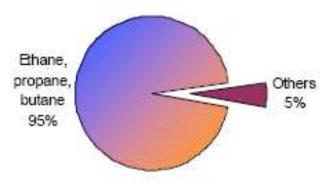


Applications of non-standard fuels LNG



LNG fuel gases

Typical Natural Gas Composition


Typical LNG Composition

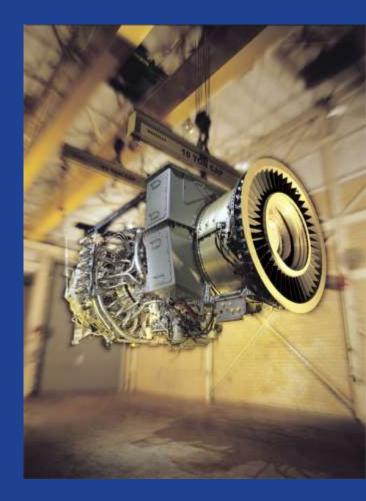
Methane 95%

- LNG production facilities required to maintain tight control of LNG composition.
 - Separate Natural Gas liquids (primarily C2+, N₂, CO₂) from liquefaction stream.
- LNG plants need gas turbines to be able to handle high C2+, N₂, CO₂.
- Aeroderivatives with SAC combustors can burn NGL blends maximizing investment recovery from the feed gas

NGL Composition

LM2500+G4 SAC FPSO Med BTU GT + 538 Package

For offshore facilities, topside equipment and construction costs are extremely sensitive to weight and space. GE's compact marine configuration provides the lowest weight and smallest footprint of any standard gas turbine package in the 20 to 34 MW power segment.

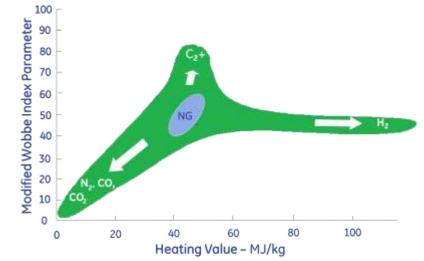

Challenge:

- LNG and offshore facility gas may contain high inert (unprocessed gas)
- Design a new fuel system capable of running medium BTU fuel with constraints on max supply pressure

Solution:

- LM2500+G4 538 dual fuel package
- New nozzles, fuel delivery systems and control modifications to meet modified Wobbe index 37 – 45
- Diesel back up fuel

Expanding fuel flex



Why fuel flex?

- lower cost fuel alternatives = Customer • **OPEX** savings
- step changes in capabilities enabled through:
 - ✓ technical innovations
 - \checkmark extensive testing
- Result in the last two years our customers • have ordered 25 gas turbines with some form of fuel flexibility features
- Expanding capabilities for
 - ✓ medium BTU fuels
 - ✓ high BTU fuels
 - ✓ gas variability

Fuel Flex Testing to Date

High propane testing completed ✓ LM2500+ Q4'09 High N₂ testing completed

- ✓ LM2500+ Q4'09
 ✓ LM6000PD/PF Q3'10
 ✓ LM6000PH Q1'11
 High CO₂ testing completed
 - ✓ LM2500+G4 Q4'11

Test objectives

- Establish DLE capability limits
 - Combustion mode window sizes
 - emissions
 - acoustics
 - starting

and the

Wobbe Index Meter and enclosure

Gas flare system

29

2012 Fuel Flex Engine tests

2012 fuel-flex engine tests

- LM2500+G4 DLE & LM6000PD validation tests in Q4 2012
- Enhanced dynamic response to change in fuel properties tested
- Performance entitlement tests for low-BTU fuels :
 - Low MWI limits down to MWI 28
 - True High MWI Rate of Change limits with new solution, up to 48MWI/min. change
 - Low MWI starts, load transients, drops & accepts

Schedule for 2012 Fuel-flex engine tests

- Critical equipment ready
- Mixer system and SW tests
- LM6000PD Test
 - Implement lessons learned
- LM2500+G4 Test

November

August

August

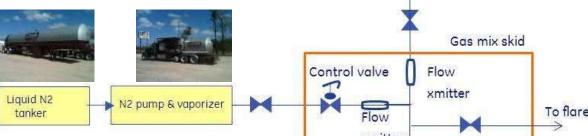
October

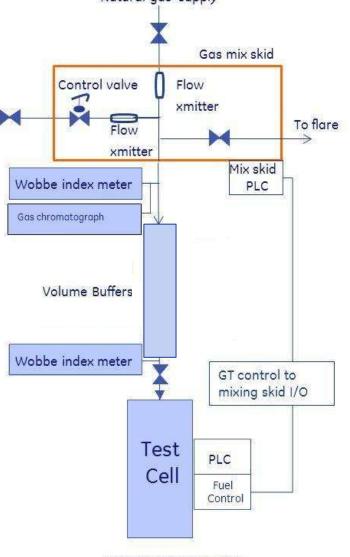
Features of mixing system

- Permanent infrastructure for Natural Bas blending with $\rm N_2$ vol. fraction of max. 57.3% (MWI 20)
- Dynamic control of selectable fraction of added gas or selectable rate of change
- Sized for LM2500 Base through LM6000PH fuel flow rates & pressures
- WIM and GC integrated for fast fuel properties measurement

magination at work

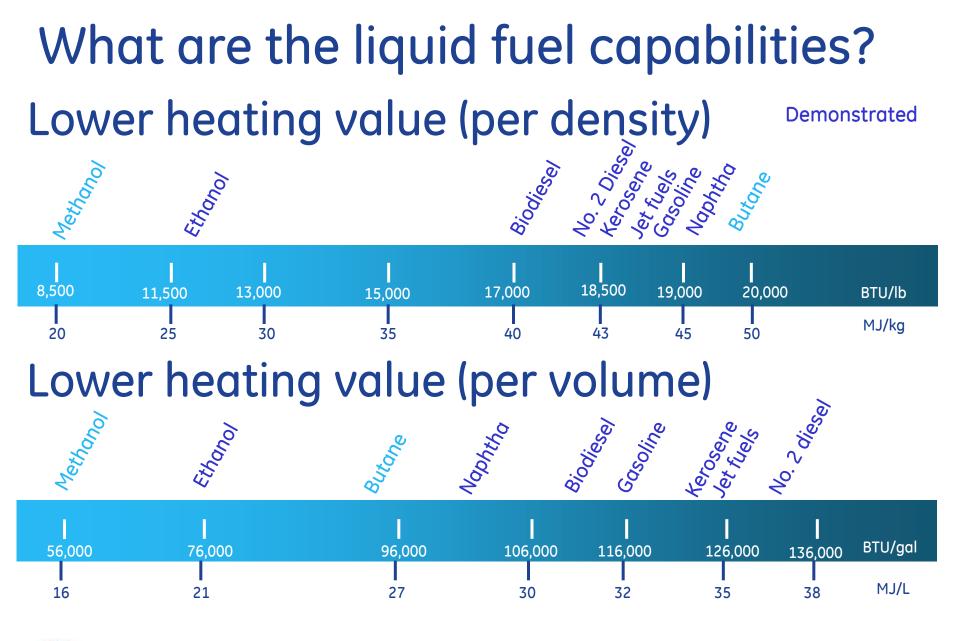
Out with the old in with the new...





Test Setup Schematic N2 System Natural gas supply

- Mixing system PLC maintains set natural gas : nitrogen mix ratio or rate of change
- Turbine fuel flow demand signal input to mix system PLC; mix ratio maintained from start up to base load
- Flare provides continuous flow when engine not operating to maintain mix ratio
- Wobbe index meter for LHV and SG near real time response; gas chromatograph provides accurate gas composition analysis

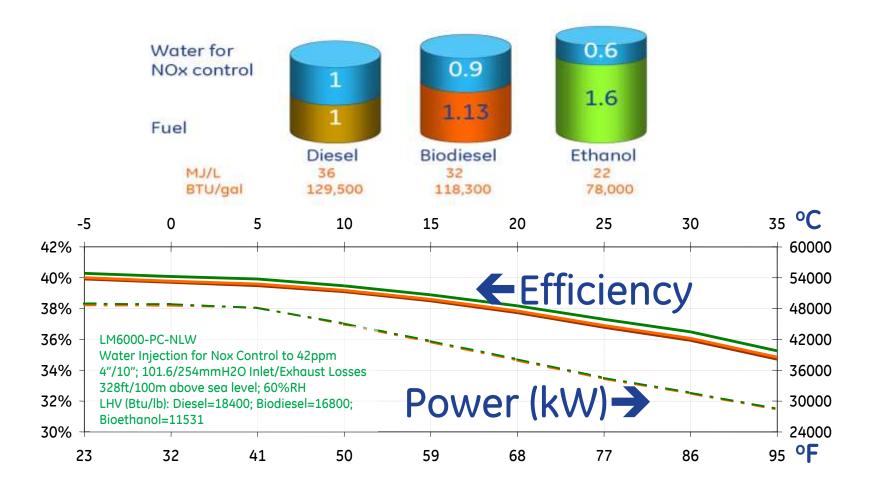


GE Proprietary Information Use or disclosure of data contained on this sheet is subject to the restrictions on the cover or first page.

2b. Non-standard Liquid Fuels

See spec MID-TD-0000-2 for final determination on acceptable fuel usage

LM biofuel applications


E	Biodiesel	Ethanol					
Is it really a E GT fuel? Yes	Biodiesel blends up to 100% allowed per ASTM D6751 and EN14214 specs	ASTM D4806 for gasoline blends					
Fuel characteristics vs. #2 diesel							
	Biodiesel	Ethanol					
LHV	Lower (10% higher flow)	Lower (60% higher flow)					
Flash point	Higher (start/ignition)	Lower (start fuel req'd)					
Lubricity	Higher	Lower (pump)					
Solvent	Higher (material compatibility)	Little change					
Stability	Lower (logistics)	No change					
Contaminants	Phosphorous, particulates	Sodium					

Biodiesel and ethanol are GE Aero approved fuels

Power, Efficiency and Emissions

Biofuel NOx emission control

Diesel Biodiesel Ethanol

Petrobras ethanol demonstration

- LM6000PC conversion from gas only to dual fuel
- 1,000 hour demo, Q1 2010
- May operate on hydrous or anhydrous (hydrous for demo)
- Less water to control NOx than NG (~25% less) or distillate (~50% less)
- Liquid fuel valve design accommodates higher flow
- Alternate fuel recommended for starting and low power ops
- Estimate operation life equivalent to diesel

UTE-JUIZ DE FORA AFTER THE CONVERSION

- +12 x LM2500+ on cruise ships have ran on biodiesel
- 2 x LM6000 have run on biodiesel at a New York site
- 2 x LM1600 successfully tested on biodiesel
- 2 x LM6000 are now ethanol capable at Brazilian plant

Results – cleaner engine and lower emissions

3. Fuel Quality

Fuel Quality is important for all fuels

Gas Fuels

- Proper analysis
- Basic conditioning
- **Dew point**
- Particulates
- Siloxanes
- ☑ Other

Liquid Fuels
✓ Proper analysis
✓ Basic treatment
✓ Particulates, asphaltenes
✓ Trace metals
✓ Bubble point
✓ Other

Fuel quality monitoring is a continuous process

See spec MID-TD-0000-1 and MID-TD-0000-2 for detailed guidelines and requirements

