Design of the LM6000 Gas Turbine Models

imagination at work

The information contained in this document is GE proprietary information and is disclosed in confidence. It is the property of GE and shall not be used, disclosed to others or reproduced without the express written consent of GE, including, but without limitation, it is not to be used in the creation, manufacture, development, or derivation of any repairs, modifications, spare parts, designs, or configuration changes or to obtain FAA or any other government or regulatory approval to do so. If consent is given for reproduction in whole or in part, this notice and the notice set forth on each page of this document shall appear in any such reproduction in whole or in part. © Copyright 2011 General Electric Company. All Rights Reserved. This material may not be copied or distributed in whole or in part, without prior written permission of the copyright owner.

LM6000 Module Derivation

Module/component	LM6000-PC/PD/PF	-PG/PH
 Low pressure compressor 	CF6-50, LM5000	CF6-50, LM5000
 High pressure compressor 	CF6-80C2	CF6-80C2
 Standard combustion system 	CF6-80C2, LM5000	LMS100
 DLE combustion system 	New configuration	LMS100
 High pressure turbine 	CF6-80C2	CF6-80E
 Low pressure turbine 	CF6-80C2, CF6-80E	LM6000-PC
VIGV, front frame, rear frame	New configuration	LM6000-PC

Description

Gas Turbine Cross Sections

Gas Turbine Cross Sections

PG to PC \rightarrow >93% commonality

Maintaining the heritage of a well proven product One of the significant changes is in the high pressure turbine

imagination at work

Maximize similarity between -PF and -PH

LM6000-PH

imagination at work

© 2011 GE Proprietary and copyrighted information – subject to restrictions on cover page

Variable Inlet Guide Vanes (VIGV)

Same for PC and PG

- Standard for mechanical drive
- Optional for power gen on -PC only
- Part of low pressure compressor module
- Regulates inlet airflow for optimum compressor loading and enhanced hot day power & part-load efficiency
- 43 articulated vanes fixed leading edge and movable trailing edge
- Hydraulically actuated unison ring with 2 actuators
- Inlet airflow interface
- Anodized Aluminum

Forward Drive Adapter

Same for PC, PD, PF, PG & PH

Low Pressure Compressor

- Common with LM5000
 - Derived from CF6-50
 - modified for cold end coupling adapter
- 5-stage axial flow compressor
 - 2.4:1 pressure ratio
 - Driven by LP turbine
- Horizontal split stator case provides access to blades and vanes
- Boroscope provisions for internal flowpath inspection
- Individual compressor blade replacement
- Improved efficiency stage 0-3 vanes

Same for PC, PD, PF, PG & PH

Front Frame

- Twelve strut frame contains A-sump, bearings, inlet gearbox, and front engine mounts
- Structural support between LPC casing and HPC casing
- 12 variable bypass valves (doors)
 - Helps optimize LPC/HPC airflow matching during acceleration, deceleration and part load operation
 - Hydraulically actuated
 - Doors fully closed at approximately 75% load
- One piece 17-4PH steel casting eliminates welded and brazed joints

Variable Bleed Valves

Variable Bleed Valves

- •Control LPC Op Line
- •PC (&PG) Increased in size by +60%

Same for PC, PD, PF, PG & PH

over PA

•Additional Hydraulic Supply

Bypass Air Collector

Same for PC, PD, PF, PG & PH

- Directs compressor bypass air off-engine
- Upper flange 81" X 18"
- AMS 5062 carbon steel
- Supports accessory gearbox

High Pressure Compressor Stator

Common with CF6-80C2

- First six stages have variable stator vanes
 - Enhanced part load efficiency
 - Hydraulically actuated
- Horizontally split casing
 - Field removable
 - Individually replaceable vanes
- "Trenched" inner case improves tip clearances and sustains efficiency
- Inter-stage bleed air provisions for cooling and balancing at stages 7, 8 and 11
- Customer bleed air provisions at stages 8 & 14 (CDP)
- Boroscope inspection ports at each stage
- High strength M152 steel casing
- Stg 11 vanes common to -80E

High Pressure Compressor Rotor

New material 3-9 spool, new material S14 disk, bleed changes

- Derived from CF6-80C2
- 14-stage axial flow compressor
- \checkmark

- Simple six piece construction
 - Disk/rotor design of fewer parts and greater rigidity
 - Inertial welded disk/shaft for increased strength and optimum materials selection
- Corrosion resistant materials eliminates
 need for coatings
- Individually replaceable blades

 Stages 1 & 2 axial dovetails
 Stages 3 to 14 radial dovetails
- Mid span damper on 1st stage provides vibration damping

LM6000 PC Combustor

- Common with CF6-80C2
- Annular machined ring construction
 - Minimal cooling air required
 - Uniform temperature profile to HPT
 - Better resistance to thermal stress
 - Short residence time decreases NOx
 - Ideal for frequent starts
- 30 fuel nozzle ports
 - Counter-rotating swirler design provides improved fuel/air mixing and NOx suppressant flow pattern
- Corrosion resistant Hastelloy X inner liner, HS-188 outer liner and dome
- Thermal barrier coating on internal surfaces

Standard Annular Combustor (SAC) based on proven design

LMS100-PA/-PG Combustor

- Starting design base: CF6-80C/LM6000
- Same CRF Volume & Diffuser
- Areas Redesigned for Operability & Performance:
 - Fuel Nozzle
 - Swirler
 - Liners
 - Areas Redesigned for Reliability Improvements:
 - A. Fuel Nozzle
 - B. Swirler / Ferrule
 - C. Splashplate
 - D. Domeplate Cooling pattern
 - E. Venturi

Designed in Lessons Learned - Rig and Core Test to Validate Design

即

LM6000PG Combustor

3-Passage Dual Fuel Nozzle with LMS100 external H.S.

LMS100 Dome with LM6000PC liners with modified cooling One Piece 10 strut Cowl Leveraged from LMS100 Hast-X Superslot Liner Geometry HS188Outer, HS188 Inner, **Cooling Redistribution Optimized Dome** Assembly features leveraged from LMS100 Common Interfaces & borescope / ignitor locations to LM6000

imagination at work

SAC Compressor Rear Frame

- •Similar to CF6-80C2 -PC Similar to CF6-80E & LMS100 • -PG
- 10 radial struts
- Structural support between HPC stator and LPT stator cases
- Contains annular combustor, HP rotor bearings, B-C sump, HP turbine and openings for fuel nozzles
- 8 boroscope ports for inspection of combustor, fuel nozzles, turbine blades and nozzles
- Inco 718 fabrication

LM6000PH CRF Hardware Details

• PH CRF is leveraged from LMS100 DLE and PD

© 2011 GE Proprietary and copyrighted information – subject to restrictions on cover page

LM6000PH DLE2 Combustor

© 2011 GE Proprietary and copyrighted information – subject to restrictions on cover page

LM6000PH HPT S1 Nozzle Changes

PG

-PD/-PF Compressor Rear Frame

- Developed for DLE combustion system
- 10 radial struts with integral split diffuser
- Structural support between HPC stator and LPT stator cases
- Contains annular DLE combustor, HP rotor bearings, B-C sump, HP turbine and openings for premixers
- 8 boroscope ports for inspection of DLE combustor, premixers, turbine blades and nozzles
- Inco 718 fabrication

-PH Compressor Rear Frame

Diffuser Casting (common with LM6PD/PH)

> Aft Hub Flange Forging (Mat'l common to LM6PD)

Aft Inner Skirt and Aft Flange Forging (Mat'l common to LM6PD)

Fuel Nozzle Ring (common with LMS100)

Stage 1 HP Turbine Nozzle Assembly

- Derived from CF6-80E
- Directs hot gas stream to stage 1 rotor blades
- 23 two-vane segments, one with borescope inspection port
- Internally cooled with HP compressor discharge air
 - Tubular inserts promote improved cooling air distribution
- Directionally Solidified DSR 142 nickel alloy
- Aluminide Coated
- Thermal Barrier Coating

High Pressure Turbine Rotor

- Two-stage cantilevered rotor drives high pressure compressor
- Disks and blades air cooled; improved cooling circuits for greater efficiency
- Inertia-welded disk/shaft for greater strength, fewer parts
- Coated blades for increased resistance to erosion and corrosion
 - Platinum aluminide & TBC external coating
 - Aluminide internal coating
- "Boltless" rotor design
- Advanced disk/seal materials

✓ New bolt pattern for lower stress ✓ Higher temperature alloys ✓ Improved cooling patterns

© 2011 GE Proprietary and copyrighted information – subject to restrictions on cover page

Improved cooling for the HPT Rotor

imagination at work

^{© 2011} GE Proprietary and copyrighted information – subject to restrictions on cover page

HP Turbine Stage 1 Blade

Airfoil air inlet holes

• PG blade similar to PC

- Eighty air cooled blades

 PG/PH model has single crystal N5 blades
 Indes
- Laser drilled cooling holes
- Internal turbulence promoters for better cooling
- \checkmark
- Corrosion resistance coatings
 - Platinum aluminide & TBC on external surfaces
 - Aluminide on internal surfaces

HPT Stage 2 Blade

- PG blade similar to PD
- Seventy-four blades
- Laser drilled cooling holes

- Internal convection air cooling
- Corrosion resistance coatings
 Platinum aluminida on external
 - Platinum aluminide on external surfaces
 - Aluminide on internal surfaces
 - TBC coating added to PG/PH

Stage 2 Nozzle Assembly

- 24 two-vane segments, one with borescope inspection port
 - Individually repairable or replaceable segments
- Cast Rene N5 plus Aluminide coating and TBC
- Internally cooled with Ilth stage air

Low Pressure Turbine

LP "Fan" Midshaft

LP Midshaft

Approx 6" diameter X 0.3" wall
Marage Steel
More robust spline

Drive Flexibility

Turbine Rear Frame

Similar for PC and PG

- Interface to exhaust duct
- Diffusing flow path
- High Exit Velocities from LPT
- **14-strut** frame provides guide vane function for improved exhaust flow characteristics
- Contains D-E sump
- One piece Inco 718 casting, no welded or brazed joints
- Location of rear engine mounts
- Damped No.7R Bearing for PG/PH

38/ GE/

LP Rotor Thrust Balance Piston

agination at work

Similar for PC and PG

- Maintains proper load on LP rotor thrust bearing
- Air supply from HPC stage 11 bleed
- Inco 718 rotating seal
- M152 steel stationary seal

Rotor and Bearing Arrangements

- Bearings number 1 and 4 absorb rotor thrust loads
- Smaller lube oil system required due to antifriction bearings
- Coast down with no damage from loss of oil supply
- Added damper to No. 7 bearing for –PG/PH

imagination at work

LM6000PG/PH By the Numbers

Component Materials

Low pressure compressor

- Cold end drive flange
- Stator casings front
- Stator casings rear
- Vanes inlet guide
- Vanes stages 1, 2
- Vanes stages 3, 4
- Blades stages O, 1
- Blades stages 2, 3, 4
- Rotor disks stages O, 1
- Rotor spool stages 2, 3, 4
- Forward shaft
- Mid shaft
- Front frame
- Air collector

High pressure compressor

- Stator casing

- Blades stages 1-5
- Blades stages 6-9
- Blades stages 10-14
- Vanes stages 0-14
- Rotor disks stage 1, 2
- Rotor disks stage 10
- Rotor spools stages 3-9
- Rotor spools stages 11-14
- Compressor discharge seal
- Rear frame

-PC/PD/PF

 $\begin{array}{l} \textbf{B5F5 + Ser Metel W} \\ \mbox{Aluminum and anodize} \\ \mbox{321SS +17-4 PH} \\ \mbox{Anodized Aluminum} \\ \mbox{Ti-6AI-4V} \\ \mbox{Ti-6AI-4V} \\ \mbox{A286} \\ \mbox{Ti-6AI-4V} \\ \mbox{B5F5 + Ser Metel 725} \\ \mbox{Ti-6AI-4V} \\ \mbox{B5F5 + Ser Metel W} \\ \mbox{Marage 250 + Ser Metel} \\ \mbox{17-4 PH} \\ \mbox{AMS5062 + polyurethane} \end{array}$

M152 Ti-6Al-4V A286 Inco 718 A286 Ti-6Al-4V Inco 718 Ti-6Al-2Sn-4Zr-2Mo Inco 718 Rene'41 Inco 718

-PG/PH PQ B5F5 + Ser Metel W Aluminum and anodize 321SS +17-4 PH

Anodized Aluminum Ti-6AI-4V Ti-6AI-4V A286 Ti-6AI-4V PQ B5F5 + Ser Metel 725 Ti-6AI-4V PQ B5F5 + Ser Metel W Marage 250 + Ser Metel 17-4 PH AMS5062 + polyurethane

M152 Ti-6Al-4V A286 Inco 718 A286 Ti-6Al-4V Inco 718 Inco 718 Inco 718, **Stg 14 disk R104 R104** Inco 718

Component Materials (Cont.)

SAC Combustor

- Outer liner
- Inner liner

DLE Combustor

- Liners
- Heat Shields
- Premixers

High pressure turbine

- Nozzles stage 1
- Nozzles stage 2
- PC Blades stage 1
- PD/-PG/-PH Blades stage 1
- Blades stage 2
- Disks/shafts stages 1, 2
- Spacer
- Thermal shield

Low pressure turbine

- Stator casings
- Blades and nozzles stages 1
- Blades and nozzles stage 2
- Blades and nozzles stage 3
- Blades and nozzles stage 4, 5
- Disks stages 1 to 5
- Rear frame
- Hot end drive flange

<u>-PC/PD/PF</u> HS188 + TBC Hastelloy X + TBC

Mar M509 + TBC N5 + TBC Inco 625

Inco 718 + Waspaloy

Inco 718

Inco 718

4340 (AMS 6414)

B&N=Rene'80 + Codep B

B&N= Rene'77 + Codep B

B&N= Rene'77 + Codep B

B&N= Rene'77 + Codep B

DSRene' 142 + Aluminide Rene'80 + Aluminide DS Rene' 142 + platinum/aluminide + TBC N5 + platinum/aluminide + TBC Rene'80 + platinum/aluminide Inco 718 Inco 718 Rene'41

<u>-PG/PH</u> HS188 + TBC <mark>HS188</mark> + TBC

Mar M509 + TBC N**4** + TBC Inco 625

N5 + Aluminide + TBC R142 + Aluminide + TBC

N5 + platinum/aluminide + TBC DS Rene'142 + platinum/aluminide R104 R104 R104

N5 R125

Waspaloy B=M, N=Rene'80 + Aluminide B=Rene'125, N=Rene'80 + Aluminide B=Rene'77, N=Rene'77 B&N= Rene'77 + Codep B Inco 718 Inco 718 4340 (AMS 6414)

Comparison to Commercial Engine Technical Data

Sources: # *	<pre># http://geae.com/ http://www.airwe</pre>	Turbine exhaust gas temperature indicated (T49)			
Model	Max. thrust Sea Level (lbf) ISO Power (shp)	Max. Low pressure rotor speed (N1 - rpm)	Max. High pressure rotor speed (N2 - rpm)	Takeoff (5 min.)	Maximum continuous
CF6-50	51,000 - 54,000	4,102	10,761	1733°F (945°C)	1670°F (910°C)
LM6000 -PC/-PD	70,300	3,780	10,700		1600°F (871°C)
CF6-80C2	52,500 - 63,500	3,854	11055	1760°F (960°C)	1697°F (925°C)
LM6000 -PG/-PH	81,100	3,930	10,711		1702°F (928°C)
CF6-80E	67,500 - 72,000	3,835	11,105	1787°F (975°C)	1724°F (940°C)
GE90-115B	115,300	2,602	11,292	1994°F (1090°C)	1922°F (1050°C)

Evolution based on proven technologies

	Max LP Rtr Speed	Max HP Rtr Speed	T3 ⁰F	T48 ⁰F	Press. Ratio Max ; ISO	# of units	Cum. Exp hrs
CF6-50 (Max Take-off)	4102	10761		1733	31.1	1700	>125 MM
LM6000-PC/PD	3780	10700	1010	1600	32.3 ; 30.7	>1000	>21 MM
CF6-80C2 (Max T/O)	3854	11055		1760	31.9	>3600	>170 MM
LM6000-PG/PH	3930	10711	1080	1702	34.8 ; 32.6		
CF6-80E1 (Max T/O)	3835	11105		1787	32.6	>450	9 MM
LMS100	3600	9650	728	1600	38.9	23	>56 k
GE90 (Max T/O)	2602	11292		1859	42	>1100	>22 MM

Evolution based on proven technologies

LM6000 PD over PC Airflow

LM6000 PC over PD – Combustion & HPT Sections

Compressor Discharge Temperature (T3)

LP Turbine Inlet Temperature (T48)

48/ GE/

Station definitions

- $0 \rightarrow 1$ Ambient to inlet
- $1 \rightarrow 2$ Inlet to compression
- 2 -> 3 Compression
- 3 → 4 Combustion
- 4 → 5 Expansion
- 5 \rightarrow 6 Mixing to afterburning
- $6 \rightarrow 7$ Afterburning to nozzle
- 7 → 8 Nozzle convergence
- 8 \rightarrow 9 Nozzle divergence to exhaust
- 9 → 0 Exhaust to ambient

